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Abstract

In this paper we establish bounds on random entropy numbers of balls of
reproducing kernel Hilbert spaces in terms of both eigenvalues of the associated
integral operator and deterministic entropy numbers. We then use this bound
to establish a new oracle inequality for support vector machines and show that
this new oracle inequality is superior over existing oracle inequalities.
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1 Introduction

Recent results [2, 16, 18] establishing learning rates for support vector machines
(SVMs) use Talagrand’s inequality together with local Rademacher averages, see
[1], to bound the estimation error, i.e., the statistical error of these learning meth-
ods. This approach requires to bound the local Rademacher averages of relatively
complicated function classes that depend on both the loss function and the repro-
ducing kernel Hilbert space (RKHS) used in the SVM. For this task, two approaches
exists: The first one, which goes back to [6] and is applied in [16, 18], uses Dudley’s
chaining together with ‖ · ‖∞-covering numbers of the RKHS, while the second one,
applied in [2], uses [8] to bound the Rademacher averages by the the eigenvalues
of the integral operator associated to the kernel of the RKHS. Both approaches
have advantages and disadvantages. For example, compared to the ‖ · ‖∞-covering
numbers, the eigenvalues are closer related to the learning problem at hand and
provide, in general, a weaker notion of the complexity of the RKHS. In particular,
the compactness of the input space is, in general, superfluous when using eigenvalues
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instead of ‖ · ‖∞-covering numbers. On the other hand, the analysis based on the
eigenvalues is substantially more involved, and so far it is unclear whether apart
from a relatively simple case considered in [2] it can be carried out for, e.g., more
general loss functions. In addition, it remains so far unclear whether the analysis
based on eigenvalues produces artifacts, such as the need of a quite restrictive noise
assumption on the data-generating distribution and different learning rates for dif-
ferent exponents of the regularization term. As a result, both approaches cannot, so
far, be compared on a fair ground, and it is thus unclear under which circumstances
one or the other is superior.

In this paper, we address these issues by presenting a new technique for bounding
the local Rademacher averages, which combines the advantages of both approaches
and simultaneously lacks their disadvantages. At the heart of our approach lies the
simple observation that one can use entropy numbers, which are the inverse concept
of covering numbers, in Dudley’s chaining argument. As a result (see Theorems 4.2
and 4.3), one can then bound the local Rademacher averages by the expectation of
random entropy numbers. In the past, these in turn have been bound by ‖ · ‖∞-
entropy (or covering) numbers which led to the first approach discussed above. To
overcome the disadvantages of this approach, our main result stated in Theorem 2.1
shows that these random entropy numbers can be bounded by either the eigenvalues
of the associated integral operator or related, deterministic entropy numbers. We
then illustrate in Section 3 how this new bound can be used in the statistical analysis
of SVMs. To this end, we establish a new oracle inequality for SVMs and derive
learning rates from this inequality. By comparing these learning rates with the
results found in [2], we then see that this new oracle inequality indeed combines
the advantages of the two approaches discussed above while simultaneously lacking
their disadvantages. In particular, it turns out that some of the requirements and
findings of [2] are artifacts from their proof technique.

The rest of this paper is organized as follows. In Section 2 we recall some facts
about RKHSs and eigenvalues. We then present our main result that bounds certain
average entropy numbers associated to an RKHS by the eigenvalues of the corre-
sponding integral operator of its kernel. Section 3 then shows how this bound can
be used in the analysis of SVMs. Finally, Section 4 contains all proofs.

2 Bounds on Random Entropy Numbers

Let us begin by introducing some notations. To this end let H1 and H2 be two
(real) Hilbert spaces and S : H1 → H2 be a bounded linear operator. We denote
the adjoint of S by S∗, i.e., S∗ is the operator which is uniquely determined by the
relation

〈Sx, y〉H2 = 〈x, S∗y〉H1 , x ∈ H1, y ∈ H2.

Recall that an operator T ∈ L(H) is called self-adjoint if T ∗ = T , and it is called
positive if 〈Tx, x〉 ≥ 0. Moreover, if the latter inequality is strict for all x 6= 0, we
say that T is strictly positive. Given an S ∈ L(H1,H2), it is elementary to see that
S∗S and SS∗ are self-adjoint and positive.

A bounded operator S : H1 → H2 is called compact if the closure of the image
SBH1 , where BH1 := {x ∈ H1 : ‖x‖H1 ≤ 1} denotes the closed unit ball of H1, is a
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compact subset of H2. One classical way to “quantify” the notion of compactness
is to consider the (dyadic) entropy numbers which, for i ≥ 1, are defined by

ei(S) := inf
{

ε > 0 : ∃x1, . . . , x2i−1 ∈ H1 such that SBH1 ⊂
2i−1⋃
j=1

(
xj + εBH2

)}
.

Clearly, S is compact if and only if limi→∞ ei(S) = 0, and the speed of this conver-
gence can be considered as a measure how compact S is.

A λ ∈ R is an eigenvalue of T ∈ L(H) if there exists an x 6= 0 such that Tx = λx.
Every such x is called an eigenvector of T and λ. It is well-known that for compact,
self-adjoint, and positive operators T : H → H there exist an at most countable
orthonormal system (ei)i∈I of H and a family (λi(T ))i∈I such that λ1 ≥ λ2 ≥ · · · > 0
and

Tx =
∑
i∈I

λi(T )〈x, ei〉ei, x ∈ H. (1)

Moreover, {λi(T ) : i ∈ I} is the set of non-zero eigenvalues of T . In the following,
we assume that I is of the form I = {1, 2, . . . , |I|} if the cardinality |I| of I is finite.
In this case, we define λi(T ) := 0 for all i > |I|. Moreover, if |I| = ∞, we assume
throughout this paper that I = N. In the following, we call (λi(T ))i≥1 the extended
sequence of eigenvalues of T .

Let us now recall some basic facts about reproducing kernel Hilbert spaces
(RKHSs) which can be found in, e.g., Chapter 4 of [13]. To this end, let X be a
non-empty set and H be a Hilbert space that consists of functions f : X → R. Then
H is called an RKHS, if the Dirac functionals δx : H → R, defined by δx(f) := f(x),
are bounded linear operators for all x ∈ X. It is well-known that every RKHS has a
unique representing kernel, i.e., a function k : X×X → R that satisfies k( · , x) ∈ H
and

f(x) = 〈f, k( · , x)〉H , f ∈ H, x ∈ X.

Moreover, if k is measurable with respect to some σ-algebra A on X, then it is easy
to show that H consists of measurable functions. Let us now assume that H is
separable and that µ is a probability measure on (X,A) such that

‖k‖L2(µ) :=
(∫

X
k(x, x) dµ(x)

)1/2

< ∞ .

Then it is well-known that H consists of square integrable functions and the inclusion
id : H → L2(µ) is continuous with ‖id : H → L2(µ)‖ ≤ ‖k‖L2(µ). Moreover, the
adjoint of this inclusion is the operator Sk,µ : L2(µ) → H defined by

Sk,µg(x) :=
∫

X
k(x, x′)g(x′)dµ(x′) , g ∈ L2(µ), x ∈ X. (2)

In other words, we have (id : H → L2(µ)) = S∗k,µ. Furthermore, the integral
operator Tk,µ := S∗k,µ ◦ Sk,µ : L2(µ) → L2(µ) turns out to be self-adjoint, positive,
and compact. In addition, its extended sequence of eigenvalues is summable, i.e.,

∞∑
i=1

λi(Tk,µ) < ∞ .

3



Let us now assume that we have a D := (x1, . . . , xn) ∈ Xn. Then the correspond-
ing empirical measure is D := 1

n

∑n
i=1 δxi , where δx denotes the Dirac measure at

x, i.e., δx(A) = 1 if x ∈ A and δx(A) = 0 otherwise. Clearly, D is a probability
measure, and hence we can consider the embedding id : H → L2(D). The following
theorem relates the entropy numbers of id : H → L2(D) to the entropy numbers of
the embedding id : H → L2(µ) if D is sampled from the product measure µn.

Theorem 2.1 Let k be a measurable kernel on X with separable RKHS H and µ
be a probability measure on X such that ‖k‖L2(µ) < ∞. Then for all 0 < p < ∞ and
all 0 < q ≤ 2 there exists a constant cp,q ≥ 1 only depending on p and q such that
for all n ≥ 1, m ≥ 1, and M := min{m,n} we have

m∑
i=1

iq/p−1ED∼µneq
i (id : H → L2(D)) ≤ cp,q

M∑
i=1

iq/p−1

(
1
i

∞∑
j=i

λj(Tk,µ)
)q/2

and

m∑
i=1

iq/p−1ED∼µneq
i (id : H → L2(D)) ≤ cp,q

M∑
i=1

iq/p−1

(
1
i

∞∑
j=i

e2
j

(
id : H → L2(µ)

))q/2

.

Let us illustrate the above theorem by the following two corollaries. The first
corollary is based on Theorem 2.1 in the case of q := 1.

Corollary 2.2 Let k be a measurable kernel on X with separable RKHS H and µ
be a probability measure on X such that ‖k‖L2(µ) < ∞. Assume that there exist
constants 0 < p < 2 and a ≥ 1 such that

λi(Tk,µ) ≤ a2 i
− 2

p , i ≥ 1, (3)

or
ei(id : H → L2(µ)) ≤ a i

− 1
p , i ≥ 1, (4)

Then there exists a constant cp > 0 only depending on p such that

ED∼µnei(id : H → L2(D)) ≤ cp a i
− 1

p , i, n ≥ 1.

Note that it is well-known that conditions (3) and (4) are actually equivalent
modulo constants only depending on p. Indeed, by combining (14), (13), (16),
and (18) we obtain λi(Tk,µ) ≤ 4e2

i (id : H → L2(µ)) for all i ≥ 1. Conversely, Carl’s
inequality (17) together with (16), (13), and (14) can be used to show that (3) implies
(4). Finally note that Theorem 3.4.2 in [3] shows a general equivalence between the
behavior of the eigenvalues of Tk,µ and the entropy numbers of id : H → L2(µ). For
faster decaying sequences, however, this equivalence is more complicated.

In terms of Lorenz sequence spaces `p,q, see Chapter 1.5 in [3], Corollary 2.2 states
that (ei(id : H → L2(µ)))i≥1 ∈ `p,∞ for some 0 < p < 2 implies(

ED∼µnei(id : H → L2(D))
)
i≥1

∈ `p,∞ .

The next corollary provides an analogous implication for `p,2.
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Corollary 2.3 Let k be a measurable kernel on X with separable RKHS H and µ
be a probability measure on X such that ‖k‖L2(µ) < ∞. Then for all 0 < p < 2 there
exists a constant cp ≥ 1 only depending on p such that for all n ≥ 1 we have

∞∑
i=1

i2/p−1ED∼µne2
i (id : H → L2(D)) ≤ cp

∞∑
i=1

i2/p−1e2
i (id : H → L2(µ)) .

3 An Application to Support Vector Machines

Throughout this section we assume that X is a measurable space, Y ⊂ [−1, 1] is
non-empty and compact, and P is a probability measure on X × Y . Moreover, let
H be a separable RKHS with bounded measurable kernel k satisfying ‖k‖∞ ≤ 1. In
addition, L : Y ×R → [0,∞) always denotes a continuous function which is convex
in the second variable and satisfies L(y, 0) ≤ 1 for all y ∈ Y . Moreover, we assume
that L is Lipschitz continuous in the sense of∣∣L(y, t1)− L(y, t2)

∣∣ ≤ |t1 − t2| , y ∈ Y, t1, t2 ∈ R. (5)

In particular, we are interested in the hinge loss, which for Y := {−1, 1} is defined
by L(y, t) := max{0, 1−yt}, y ∈ Y , t ∈ R. The function L will serve as loss function
and consequently let us recall the associated L-risk

RL,P (f) := E(x,y)∼P L(y, f(x)),

where f : X → R is a measurable function. Note that our assumptions immediately
give RL,P (0) ≤ 1. Furthermore, the minimal L-risk is denoted by R∗

L,P , i.e.

R∗
L,P := inf{RL,P (f) | f : X → R measurable},

and a function attaining this infimum is denoted by f∗L,P . In the following we always
assume that there exists at least one such f∗L,P .

Recall that support vector machines, see [4, 10, 13], are based on the optimization

fP,λ := arg min
f∈H

(
λ‖f‖2

H +RL,P (f)
)

,

where λ > 0 is a user-defined regularization parameter and the function fP,λ is
known to be uniquely determined. Note that if we identify a training set D =
((x1, y1), . . . , (xn, yn)) ∈ (X×Y )n with its empirical measure, then fD,λ denotes the
empirical estimators of the above learning scheme.

One way to describe the approximation error of support vector machines is the
approximation error function

A(λ) := λ‖fP,λ‖2
H +RL,P (fP,λ)−R∗

L,P , λ > 0,

which is discussed in some detail in [15] and Chapter 5.4 of [13].

Theorem 3.1 Let L, H, and P satisfy the above assumptions. Moreover, assume
that there are constants a ≥ 1 and 0 < p < 2 such that

λi(Tk,PX
) ≤ a

2
p i
− 2

p , i ≥ 1, (6)
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In addition, suppose that for all 0 < λ ≤ 1 and all f ∈ λ−
1
2 BH we have

EP

(
L ◦ f − L ◦ f∗L,P )2 ≤ c

(
‖f‖∞ + 1

)v (EP L ◦ f − L ◦ f∗L,P )ϑ (7)

for some constants c ≥ 1, ϑ ∈ (0, 1], and v ∈ [0, 2]. Then there exists a constant
K ≥ 1 such that for all 0 < λ ≤ 1, ε ∈ (0, 1], x ≥ 1 satisfying

ε ≥ max
{

A(λ) + λ,

(
Ka

λ
2αp+v(2−p)

4 n

) 4
8−2αp−(v+2ϑ)(2−p)

,

(
Ka

λ
α(2+p)

4 n

) 4
(2+p)(2−α)

,( Kx

λ
v
2 n

) 2
4−v−2ϑ

,
( Kx

λ
α
2 n

) 2
2−α

}
,

we have

Pn
(
D ∈ (X × Y )n : RL,P (fD,λ)−R∗

L,P < A(λ) + ε
)
≥ 1− e−x .

In order to illustrate the above theorem let us now assume that L is the hinge loss
introduced above. Moreover, assume that P is a distribution with Tsybakov noise
exponent q ∈ [0,∞], i.e., there exists a C > 0 such that for η(x) := P (y = 1|x),
x ∈ X, and all sufficiently small t > 0 we have

PX

(
{x ∈ X : |2η(x)− 1| ≤ t}

)
≤ C · tq .

When q > 0, it follows from [16, Lemma 6.6] that the assumption (7) is satisfied
with α = 1, v = q+2

q+1 , ϑ = q
q+1 and C = ‖(2η − 1)−1‖q,∞ + 2. Moreover it is simple

to show the same is true when q = 0 but with C = 5. Consequently, the condition
on ε becomes

ε ≥ max
{

A(λ) + λ,
K

λ

(a

n

) 4(q+1)
2q+pq+4

,
K

λ

(a

n

) 4
2+p

,
K

λ

(x

n

) 2(q+1)
q+2

,
K

λ

(x

n

)2
}

.

Some easy estimates then show that this reduces to

ε ≥ A(λ) + λ + Kx2λ−1
(a

n

) 4(q+1)
2q+pq+4

, (8)

where K ≥ 1 is a suitable constant and a and n are assumed to satisfy n ≥ a ≥ 1.
Let us now assume that there exists constants c > 0 and β ∈ (0, 1] such that

A(λ) ≤ cλβ for all λ > 0. For λn := n
− 4(q+1)

(2q+pq+4)(1+β) estimate (8) then immediately
yields the learning rate

n
− 4β(q+1)

(2q+pq+4)(1+β) ,

which has already been established in [15, Theorem 1] for continuous kernels over
compacta under the more restrictive entropy number assumption

ei(id : H → C(X)) ≤ a
1
p i
− 1

p , i ≥ 1. (9)

Let us now compare the learning rate above to the findings of [2]. To this end, it
suffices to consider the case q = ∞, i.e., the conditional probability η(x) is bounded
away from the critical level 1/2. In this case our learning rate reduces to

n
− 4β

(2+p)(1+β) . (10)
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On the other hand, for

γ(n) :=
1√
n

inf
j≥1

(
j√
n

+
√∑

i≥j

λi(Tk,PX
)

)
, n ≥ 1,

assumption (6) yields a constant ca,p such that γ(n) ≤ ca,pn
− 2

2+p for all n ≥ 1. The
oracle inequality for SVMs derived in [2, Theorem 3.1] thus yields the rate

n
− 2β

2+p , (11)

which is obviously worse by a factor of 2
1+β in the exponent. Moreover, note that this

oracle inequality required additionally, that η is also bounded away from the most
benign levels 0 and 1, whereas our result does not require this somewhat nonnatural
assumption. Moreover, [2, Theorem 3.1] also provides an oracle inequality for SVMs
that use the regularization term λ‖f‖H which is lighter than the standard λ‖f‖2

H

term. In order to derive a learning rate from this oracle inequality we write

A∗(λ) := inf
f∈H

(
λ‖f‖H +RL,P (f)−R∗

L,P

)
, λ > 0,

for the approximation error function that corresponds to this lighter regularization.
Using the techniques from [15, Appendix] it is easy to show that our assumption

A(λ) ≤ cλβ implies A∗(λ) ≤ c̃λ
2β

1+β for a constant c̃ and all λ > 0. Consequently,
the oracle inequality of [2, Theorem 3.1] yields the learning rate (10). Note that the
discrepancy of the learning rates (10) and (11) make the authors in [2] conjecture
that the lighter regularization may be superior. Of course, our analysis neither
proves or disproves this conjecture since so far no lower bounds are known. However,
our analysis shows at least that the techniques of [2] are sub-optimal for analyzing
SVMs with standard regularization term.

4 Proofs

In this section we provide the proofs for the results of Section 2. To this end we recall
some results on entropy numbers and their relation to eigenvalues in Subsection 4.1.
The proofs of the main results are then presented in Subsection 4.2.

4.1 Eigenvalues, Singular Numbers, and Entropy Numbers

Given a compact operator S : H1 → H2, the operator S∗S : H1 → H1 is compact,
positive, and self-adjoint, and hence it enjoys a representation of the form (1) with
non-negative eigenvalues. We write

si(S) :=
√

λi(S∗S) , i ≥ 1 (12)

for the singular numbers of S, where (λi(S∗S))i≥1 is the extended sequence of eigen-
values of S∗S. Recall that S∗S and SS∗ have exactly the same non-zero eigenvalues
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with the same geometric multiplicities and hence we find si(S∗) = si(S) for all i ≥ 1.
Moreover, we have

s2
i (S) = λi(S∗S) = si(S∗S) , i ≥ 1, (13)

where in the second equality we used the fact that for compact, positive, and self-
adjoint T : H → H we have

si(T ) =
√

λi(T ∗T ) =
√

λi(T 2) = λi(T ) , i ≥ 1. (14)

Let us now consider another interesting property of the singular numbers. To this
end, let S ∈ L(E,F ) be a bounded operator acting between arbitrary Banach spaces
E and F . For i ≥ 1, its i-th approximation number is defined by

ai(S) := inf
{
‖S −A‖ : A ∈ L(E,F ) with rank A < i

}
. (15)

Obviously, (ai(S))i≥1 is decreasing, and if rank S < ∞, we also have ai(S) = 0 for
all i > rank S. Moreover, by diagonalization (see, e.g., Section 2.11 of [9]), one can
show that

si(S) = ai(S) (16)

for all compact S ∈ L(H1,H2) acting between Hilbert spaces and all i ≥ 1.
Entropy numbers are closely related to the approximation numbers introduced in

Namely, Carl’s inequality, see Theorem 3.1.2 in [3], states that for all 0 < p ≤ ∞
and 0 < q < ∞ there exists a constant cp,q > 0 such that

m∑
i=1

iq/p−1eq
i (S) ≤ cp,q

m∑
i=1

iq/p−1aq
i (S) (17)

for all bounded operators S : E → F acting between Banach spaces and all m ≥ 1.
Moreover, for Hilbert spaces H and compact operators T : H → H, we have the
following strong inverse of the above inequality:

ai(T ) ≤ 2ei(T ) , i ≥ 1 . (18)

For a proof we refer to p. 120 in [3].

4.2 Proofs of the Random Entropy Number Bounds

Besides the material from Subsection 4.1 we also need the following result on random
eigenvalues for the proof of Theorem 2.1. This result was first shown by [11, 12] in the
special case of continuous kernels over compact metric spaces, and [19] generalized
this result to bounded measurable kernels with separable RKHSs. However, a close
inspection of the proof in [19] shows that the boundedness of the kernel k can be
replaced by the weaker assumption ‖k‖L2(µ) < ∞.

Theorem 4.1 Let k be a measurable kernel on X with separable RKHS H and µ
be a probability measure on X such that ‖k‖L2(µ) < ∞. Then for all m ≥ 1 we have

ED∼µn

∞∑
i=m

λi(Tk,D) ≤
∞∑

i=m

λi(Tk,µ) . (19)
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Proof of Theorem 2.1: Carl’s inequality (17) shows that there exists a constant
cp,q > 0 such that for m,n ≥ 1 and all D ∈ Xn we have

m∑
i=1

iq/p−1eq
i (S

∗
k,D) ≤ cp,q

m∑
i=1

iq/p−1aq
i (S

∗
k,D) = cp,q

min{m,n}∑
i=1

iq/p−1aq
i (S

∗
k,D) ,

where in the last step we used that n ≥ rank S∗k,D implies ai(S∗k,D) = 0 for all i > n.
Moreover, for M := min{m,n} and M̃ := b(M + 1)/2c, we have

M∑
i=1

iq/p−1aq
i (S

∗
k,D) ≤

M̃∑
i=1

(2i− 1)q/p−1aq
2i−1(S

∗
k,D) +

M̃∑
i=1

(2i)q/p−1aq
2i(S

∗
k,D) .

If p ≤ q, the monotonicity of the approximation numbers thus yields

M∑
i=1

iq/p−1aq
i (S

∗
k,D) ≤ 2q/p

M∑
i=1

iq/p−1aq
2i−1(S

∗
k,D) ,

and if p > q we analogously find

M∑
i=1

iq/p−1aq
i (S

∗
k,D) ≤ 22+q/p

M∑
i=1

iq/p−1aq
2i−1(S

∗
k,D) ,

Using (16) and (12) we further see that a2
i (S

∗
k,D) = s2

i (S
∗
k,D) = si(S∗k,DSk,D) =

λi(Tk,D) for all i ≥ 1 and D ∈ Xn. Since q ≤ 2 we thus obtain

m∑
i=1

iq/p−1ED∼µneq
i (S

∗
k,D) ≤ c̃p,q

M∑
i=1

iq/p−1ED∼µnaq
2i−1(S

∗
k,D)

≤ c̃p,q

M∑
i=1

iq/p−1
(
ED∼µnλ2i−1(Tk,D)

)q/2
,

where c̃p,q := 22+q/pcp,q. Now for each D ∈ Xn the sequence (λi(Tk,D))i≥1 is mono-
tonically decreasing and hence so is (ED∼µnλi(Tk,D))i≥1. By Theorem 4.1, we hence
find

i ED∼µnλ2i−1(Tk,D) ≤
2i−1∑
j=i

ED∼µnλj(Tk,D) ≤
∞∑
j=i

λj(Tk,µ)

for all i ≥ 1, and consequently we obtain

M∑
i=1

iq/p−1
(
ED∼µnλ2i−1(Tk,D)

)q/2 ≤
M∑
i=1

iq/p−1

(
1
i

∞∑
j=i

λj(Tk,µ)
)q/2

.

Combining the estimates above, we then obtain the first assertion. Moreover, by
(12), (13), and (16), we have

λj(Tk,µ) = si(S∗k,µ ◦ Sk,µ) = s2
i (S

∗
k,µ) = a2

j (S
∗
k,µ) ≤ 4e2

j (S
∗
k,µ) ,
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where in the last step we used (18). Combining the estimates above, we hence obtain
m∑

i=1

iq/p−1ED∼µneq
i (S

∗
k,D) ≤ 2q c̃p,q

M∑
i=1

iq/p−1

(
1
i

∞∑
j=i

e2
j (S

∗
k,µ)
)q/2

,

i.e., we have also shown the second assertion.

Proof of Corollary 2.2: Since 0 < p < 2, it is easy to see that there exists a
constant c̃p such that

1
i

∞∑
j=i

λj(Tk,µ) ≤ a2 · 1
i

∞∑
j=i

j
− 2

p ≤ c̃2
p a2 i

− 2
p

for all i ≥ 1. Using 1
p − 1 > −1, we hence find another constant c′p > 0 such that

for m ≥ 1 we have
m∑

i=1

i
2
p
−1
(

1
i

∞∑
j=i

λj(Tk,µ)
)1/2

≤ c̃p a
m∑

i=1

i
1
p
−1 ≤ c′p am

1
p . (20)

Furthermore, for m̃ := b(m+1)/2c, the monotonicity of the entropy numbers yields

m̃
2
p ED∼µnem(S∗k,D) ≤

m∑
i=m̃

i
2
p
−1 ED∼µnei(S∗k,D) ≤

m∑
i=1

i
2
p
−1 ED∼µnei(S∗k,D) ,

and since m/2 ≤ b(m + 1)/2c = m̃, we hence obtain

ED∼µnem(S∗k,D) ≤ 41/pm
− 2

p

m∑
i=1

i
2
p
−1 ED∼µnei(S∗k,D) .

Combining this estimate with (20) and Theorem 2.1 for p̃ := p/2 and q := 1 then
yields first assertion if (3) is satisfied. The second case can be shown completely
analogously.

Proof of Corollary 2.3: For q = 2 the right-hand side of the second estimate of
Theorem 2.1 becomes

M∑
i=1

iq/p−1

(
1
i

∞∑
j=i

e2
j (S

∗
k,µ)
)q/2

=
M∑
i=1

i2/p−2
∞∑
j=i

e2
j (S

∗
k,µ) =

∞∑
i=1

∞∑
j=1

bi,j ,

where bi,j := 0 if i > min{j, M} and bi,j := i2/p−2e2
j (S

∗
k,µ) otherwise. Moreover,

rearranging the sums and using p < 2 yields a constant cp only depending on p such
that

∞∑
j=1

∞∑
i=1

bi,j =
M∑

j=1

j∑
i=1

i2/p−2e2
j (S

∗
k,µ) +

∞∑
j=M+1

M∑
i=1

i2/p−2e2
j (S

∗
k,µ)

≤ cp

M∑
j=1

j2/p−1e2
j (S

∗
k,µ) + cp

∞∑
j=M+1

M2/p−1e2
j (S

∗
k,µ)

≤ cp

∞∑
j=1

j2/p−1e2
j (S

∗
k,µ)

Applying Theorem 2.1 then yields the assertion.
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4.3 Bounding Rademacher Averages by Random Entropy Numbers

Given a probability space (Θ, C, ν), let us recall that a finite sequence ε1, . . . , εn

of i.i.d. random variables εi : Θ → {−1, 1}, i = 1, . . . , n, is called a Rademacher
sequence if ν(εi = 1) = ν(εi = −1) = 1/2 for all i = 1, . . . , n. Now let Z be a
non-empty set equipped with some σ-algebra and L0(Z) be the corresponding set of
all measurable functions g : Z → R. Given a non-empty G ⊂ L0(Z), a Rademacher
sequence ε1, . . . , εn, and a finite sequence D := (z1, . . . , zn) ∈ Zn, the n-th empirical
Rademacher average of G is defined by

RadD(G, n) := Eν sup
g∈G

∣∣∣∣ 1n
n∑

i=1

εig(zi)
∣∣∣∣ .

With the help of Dudley’s chaining argument, see [5] and Chapter 2.2 in [17], one
can bound empirical Rademacher averages RadD(G, n) by the covering numbers of
G with respect to L2(D). We refer to [7] for an overview of this approach. However,
for our purposes it is more convenient to use entropy numbers instead of covering
numbers. Fortunately, Dudley’s chaining argument works with entropy numbers as
well as with covering numbers. In order to present the corresponding result, we
define the (dyadic) entropy numbers of a subset A ⊂ H of a Hilbert space H by

ei(A,H) := inf
{

ε > 0 : ∃x1, . . . , x2i−1 ∈ H such that A ⊂
2i−1⋃
j=1

(
xj + εBH

)}
.

Note that for a bounded operator S : H1 → H2 this definition yields ei(S) =
ei(SBH1 ,H2) for all i ≥ 1. Now the following result whose proof can be found in
Chapter 7.3 of [13] bounds empirical Rademacher averages by entropy numbers.

Theorem 4.2 For every non-empty set G ⊂ L0(Z) and every finite sequence D :=
(z1, . . . , zn) ∈ Zn, we have

RadD(G, n) ≤
√

ln 16
n

( ∞∑
i=1

2i/2 e2i

(
G ∪ {0}, L2(D)

)
+ sup

g∈G
‖g‖L2(D)

)
.

The analysis of learning algorithms usually require to consider the expectation
of empirical Rademacher averages. Using Theorem 4.2 and an imposed bound on
the average entropy numbers the following theorem provides a bound on expected
Rademacher averages. Its proof follows the ideas of [6] and can be found in Chapter
7.3 of [13].

Theorem 4.3 Let G ⊂ L0(Z) be a non-empty set and P be a distribution on Z.
Suppose that there exist constants B ≥ 0 and σ ≥ 0 such that ‖h‖∞ ≤ B and
EP h2 ≤ σ for all h ∈ G. Furthermore, assume that for a fixed n ≥ 1 there exist
constants p ∈ (0, 2) and a ≥ Bp such that

ED∼P n ei(G, L2(D)) ≤ a
1
p i
− 1

p , i ≥ 1. (21)

Then there exist constants C1(p) > 0 and C2(p) > 0 depending only on p such that

ED∼P nRadD(G, n) ≤ max
{

C1(p) a
1
2 σ

2−p
4 n−

1
2 , C2(p) a

2
2+p B

2−p
2+p n

− 2
2+p

}
.
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4.4 Bounding Rademacher Averages by Random Entropy Numbers

Let us begin by introducing some additional notations. To this end, let L : Y ×R →
[0,∞) be continuous function which is convex in the second variable and satisfies
L(y, 0) ≤ 1 for all y ∈ Y . Moreover, we assume that L is Lipschitz continuous
in the sense of (5). In addition, let H be a separable RKHS over X with bounded
measurable kernel k satisfying ‖k‖∞ ≤ 1, and P be a probability measure on X×Y .
Given a fixed λ > 0 we define

gf := λ‖f‖2
H + L ◦ f − λ‖fP,λ‖2

H − L ◦ fP,λ, f ∈ H,

where L ◦ f denotes the function (x, y) 7→ L(y, f(x)). Moreover, we need the set
G(λ) := {gf : f ∈ λ−1/2BH} and for fixed ε > 0 we further write

Gε := {g ∈ G(λ) : EP g ≤ ε}

and

Λ :=
(

A(λ) + ε

λ

)1/2

.

For the proof of the following lemma we finally need to recall the elementary Lemma
4.1 in [14] which showed ‖f‖H ≤ Λ for all f ∈ H with gf ∈ Gε.

Lemma 4.4 Assume that the conditions on L and H mentioned above are true.
Furthermore, let n ∈ N, and assume that there are constants a ≥ 1 and p ∈ (0, 2)
such that

EDX∼P n
X

ei(id : H → L2(DX)) ≤ a
1
p i
− 1

p , i ≥ 1. (22)

Then there is a constant cp > 0 depending only on p such that for all distributions
P on X × Y , all λ ∈ (0, 1], ε ∈ (0, 1], and all τε ≥ supg∈Gε

EP g2 we have

ED∼P nRadD(Gε, n) ≤ cp max
{(

Λ2 + 1
) p

4 τ
2−p
4

ε

(a

n

) 1
2
,
(
Λ2 + 1

) 1
2

(a

n

) 2
2+p

}
.

Proof: Let us write G̃ε := {λ‖f‖2
H +L◦f : f ∈ ΛBH} and H := {L◦f : f ∈ ΛBH}.

Now observe that λ‖f‖2
H ≤ 2 for all f ∈ ΛBH , and hence the additivity of the

entropy numbers, see . . . , together with the Lipschitz continuity of L yields

e2i−1

(
Gε, L2(D)

)
= e2i−1

(
G̃ε, L2(D)

)
≤ ei

(
[0, 2], | · |

)
+ ei

(
H, L2(DX)

)
≤ 21−i + ei

(
ΛBH , L2(DX)

)
for all i ≥ 1 and all D := ((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n, where DX is the
empirical measure associated to DX := (x1, . . . , xn). Averraging over D and using
(22) we thus obtain

ED∼P ne2i−1

(
Gε, L2(D)

)
≤ 21−i + Λa

1
p i
− 1

p ≤ c̃p(Λ2 + 1)
1
2 a

1
p i
− 1

p

for a suitable constant c̃p only depending on p. From this it is straightforward to
conclude that

ED∼P nei

(
Gε, L2(D)

)
≤ cp(Λ2 + 1)

1
2 a

1
p i
− 1

p

12



for all i ≥ 1, where cp is another constant only depending on p. Now observe that,
for f ∈ H with gf ∈ Gε, we have ‖L ◦ f‖∞ ≤ 1 + ‖f‖∞ ≤ 1 + ‖f‖H ≤ 1 + Λ
and λ‖f‖2

H ≤ 2. From this it is easy to conclude that ‖gf‖∞ ≤ Λ + 3 =: B for
all gf ∈ Gε. Assuming without loss of generality that cp ≥

√
10 we hence find for

ã := cp
p(Λ2 + 1)

p
2 a that ã ≥ Bp. Applying Theorem 4.3 then yields the assertion.

Proof of Theorem 3.1: We first note that, besides the assumed entropy num-
ber bound, Theorem 3.1 is a slightly simplified version of Theorem 2.1 of [14].
An inspection of the proof of Theorem 2.1 of [14] shows that the entropy num-
ber assumption imposed in that theorem is only used in Lemma 4.3 of [14] to
bound the modulus of continuity ωP,n(G(λ), ε). Moreover, symmetrization yields
ωP,n(G(λ), ε) ≤ 2ED∼P nRadD(Gε, n), and using Corollary 2.2, we can hence replace
Lemma 4.3 of [14] by Lemma 4.4 above. The rest of the proof of Theorem 2.1 of
[14] is not affected.
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